DARPA, META and the Cyber-physical

Defense Advanced Research Projects Agency

In a roundabout way I ended up here looking at a new term, at least for me, cyber-physical. It aligns itself to *cough* BIM *cough* but without a doubt goes much further than the current idea but certainly fits within mine and others ideas for where it should/will go. Although this is applied to a system rather than a building but a very complex system at that. In a nutshell, to completely simulate a real world object.


  • The ultimate goal of the META program is to dramatically improve the existing systems engineering, integration, and testing process for defense systems. META is not predicated on one particular alternative approach, metric, technique or tool. Broadly speaking, however, it aims to develop model-based design methods for cyber-physical systems far more complex and heterogeneous than those to which such methods are applied today; to combine these methods with a rigorous deployment of hierarchical abstractions throughout the system architecture; to optimize system design with respect to an observable, quantitative measure of complexity for the entire cyber-physical systems; and to apply probabilistic formal methods to the system verification problem, thereby dramatically reducing the need for expensive real-world testing and design iteration.

  • The top-level technical objectives of the META program are as follows:

    • Develop a practical, observable metric of complexity for cyber-physical systems to enable cyber-vs-physical implementation trades and to improve parametrization of cost and schedule;

    • Develop a quantitative metric of adaptability associated with a given system architecture that can support trade-offs between adaptability, complexity, performance, cost, schedule, risk, and other system attributes;

    • Develop a structured design flow employing hierarchical abstraction and model-based composition of electromechanical and software components;

    • Develop a component and manufacturing model library for a given airborne or ground vehicle systems domain through extensive characterization of desirable and spurious interactions, dynamics, and properties of all constituent components down to the numbered part level; develop context models to reflect various operational environments;

    • Develop a verification flow that generates probabilistic “certificates of correctness” for the entire cyber-physical system based on stochastic formal methods, scaling linearly with problem size;

    • Apply the above framework and toolset to design, manufacture, integrate, and verify a ground vehicle of substantial complexity 5X faster than with a conventional design/build/test approach.”

    META Final Deliverables these should be looked at is it contains the nuts and bolts of actual deliverables from high tech companies trying to meeting these requirements.


About Shaun Farrell

I have been involved in the construction sector since 1986 and over the years I have seen things change dramatically. Much of the change has been directly as a result of technology. This blog will be about the key combinations of People, Process and Technology. Any views expressed here are strictly my own.
This entry was posted in Brain Dump, Futures, Process, Technology. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s